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Abstract

Host biomarkers are increasingly being considered as tools for improved COVID-19 detec-

tion and prognosis. We recently profiled circulating host-encoded microRNA (miRNAs) dur-

ing SARS-CoV-2 infection, revealing a signature that classified COVID-19 cases with

99.9% accuracy. Here we sought to develop a signature suited for clinical application by

analyzing specimens collected using minimally invasive procedures. Eight miRNAs dis-

played altered expression in anterior nasal tissues from COVID-19 patients, with miR-142-

3p, a negative regulator of interleukin-6 (IL-6) production, the most strongly upregulated.

Supervised machine learning analysis revealed that a three-miRNA signature (miR-30c-2-

3p, miR-628-3p and miR-93-5p) independently classifies COVID-19 cases with 100% accu-

racy. This study further defines the host miRNA response to SARS-CoV-2 infection and

identifies candidate biomarkers for improved COVID-19 detection.

Introduction

Host responses to SARS-CoV-2 infection are currently being examined as biomarkers for both

improved detection of pre- or asymptomatic COVID-19 cases [1] and the prognosis of

COVID-19 severity [2–4]. In contrast to viral RNA molecules, host biomarkers such as micro-

RNAs (miRNAs) are relatively abundant in the patient during the early pre-symptomatic

period. MicroRNAs are small non-coding RNAs that regulate biological processes, including

the host antiviral immune response. During the earliest phase of viral infection, prior to symp-

tom onset and detectable virions, the pathogen triggers signaling cascades in the innate effec-

tors of the host immune system. These first line responders (e.g. myeloids) react rapidly,

releasing expressed miRNAs in circulation.

We recently characterised changes in the circulating miRNA profile of human plasma

observed during SARS-CoV-2 infection [1]. With many molecular COVID-19 tests employing

nasal or nasopharyngeal swabs as analytes, here we analysed the miRNA profile in nasal swabs

derived from COVID-19 patients and uninfected controls.
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Materials and methods

Ethics statement

The analysis of miRNAs from patient samples was approved by the CSIRO Human Research

Ethics Committee (proposal # 2020_19). Formal consent was not obtained from patients due

to anonymity. All patient information was de-identified and samples randomised prior to

RNA isolation.

Patient cohort information, sample collection and storage

Swabs of the anterior nares were collected by Barwon Health (Geelong, Australia) from mem-

bers of the public undergoing COVID-19 testing between July and August 2020 (Table 1).

Samples were also collected from persons defined as uninfected controls, who displayed no

COVID-19 symptoms and returned negative SARS-CoV-2 PCR test results. Samples were col-

lected by inserting swabs into patient nostrils (no more than 1.5 cm), then slowly rotated for a

total of 15 sec, collecting as much nasal discharge as possible. Swabs were collected in universal

transport medium and stored at -80˚C until processed.

RNA isolation and next-generation sequencing (NGS)

Total RNA was isolated from 200 μL of sample using the miRNeasy micro kit (Qiagen) as per

the manufacturer’s instructions with one modification: following lysis with Qiazol, glycogen

(10 μg, Sigma Aldrich, G1767) was added as a carrier to each sample. Complementary DNA

libraries were prepared using the QIAseq miRNA Library Kit with QIAseq miRNA NGS 48

Index IL (Qiagen) as per the manufacturer’s protocol (HB-2157-007 March 2020), with the fol-

lowing modifications: 5 μL of RNA was used as the template and the library amplification

increased to 24 cycles. Libraries were analysed using the High Sensitivity DNA chip (Agilent)

Table 1. Overview of patient information.

Patient Collection date Test result SARS-CoV-2 CT Replicate 1 SARS-CoV-2 CT Replicate 2

NS001 6/08/2020 SARS-CoV-2 Positive 28.26 28.3

NS002 9/08/2020 SARS-CoV-2 Positive 29.11 29.51

NS004 9/08/2020 SARS-CoV-2 Positive 29.21 29.18

NS005 8/08/2020 SARS-CoV-2 Positive 20.95 20.9

NS007 6/08/2020 SARS-CoV-2 Positive 29.29 28.28

NS008 5/08/2020 SARS-CoV-2 Positive 35.05 37.56

NS009 9/08/2020 SARS-CoV-2 Positive 28.91 28.15

NS010 6/08/2020 SARS-CoV-2 Positive 21.19 19.53

NS011 8/08/2020 SARS-CoV-2 Positive 22.26 24.57

NS012 5/08/2020 SARS-CoV-2 Positive 34.46 35.63

NS013 7/08/2020 SARS-CoV-2 Positive 27.68 28.52

NS014 5/08/2020 SARS-CoV-2 Positive 21.57 23.24

NS015 19/07/2020 Negative - -

NS016 19/07/2020 Negative - -

NS017 19/07/2020 Negative - -

NS018 19/07/2020 Negative - -

NS019 19/07/2020 Negative - -

NS020 19/07/2020 Negative - -

NS021 19/07/2020 Negative - -

NS023 19/07/2020 Negative - -

https://doi.org/10.1371/journal.pone.0265670.t001
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on the Agilent Bioanalyser 2100 to ensure correct insert size and minimal adapter or primer

carryover. Libraries were sent to the Australian Genome Research Facility (AGRF) for 100 bp

single end sequencing on the NovaSeq 6000 (Illumina).

Data pre-processing and differential expression

Reads were trimmed of adapters to a read length of 18–26 nucleotides using CutAdapt. The

remaining reads were reviewed using FastQC (www.bioinformatics.babraham.ac.uk/projects/

fastqc/) to ensure high-quality data. miRNA identification and quantification were carried out

using miRDeep2 against the most recent miRBase human reference (version 22). Read counts

were normalised and differential expression analysis was performed in R using the DESeq2

package. An adjusted False Discovery Rate (FDR) of a p-value of<0.05 was used to identify

differentially expressed miRNAs.

Machine learning

All machine learning analysis was conducted using the scikit-learn [5] module in python.

miRNA counts were scaled using either a standard z-score transformation or a robust scaler

(where the median is removed and the data is scaled according to the interquartile range). Fea-

ture selection was performed using recursive feature elimination (RFE) to identify the miRNAs

that contributed the most to the classification model. For binary classification, a logistic regres-

sion model was used. For multiclass classification, a linear support vector classifier was used.

Once the optimal number of features (miRNAs) was selected, the data was PCA transformed.

Each model underwent hyperparameter tuning using GridSearchCV. To assess the perfor-

mance of the classification model, the data was randomly split into 70% labelled training data

and 30% unlabelled test data, and the predicted classes of the test data samples were compared

to the true classes. This process was repeated 1,000 times to ensure confidence in the classifica-

tion performance. The machine learning models were assessed on their accuracy (how many

of the predictions were correct), precision (how many of the predicted positives were true pos-

itives), and recall (how many of the true positives were found by the model). The logistic

regression model was also assessed using the receiver operating characteristic area under the

curve (ROC AUC), which is a succinct metric to describe a binary classification model [6].

Statistics

Statistical analyses were performed using the SciPy v1.6.0 analysis package. All measurements

were obtained from individual samples. Differences in qRT-PCR results were assessed using a

one-sided Mann-Whitney U test due to the non-parametric nature of the fold-over-detectable

transformation. Normality was tested using a combination skew and kurtosis test (scipy.stats.

normaltest). A p-value <0.05 was considered significant.

Results and discussion

Small RNA seq resulted in 13–46 million (average 23 million) raw reads per sample, which

have been submitted to the NCBI short read archive (SRA, project accession number

PRJNA816999). Reads were trimmed of adaptors and filtered on length (18–26 nt) and quality,

resulting in 2.4–10.6 million (average 5.4 million) reads per sample for further analysis. MiR-

Deep2 mapper was used to identify all known miRNA transcripts amongst the 20 samples (by

mapping to the miRBase v22 human dataset) and read counts were determined for each

mature miRNA transcript using miRDeep2 quantifier. A total of 1,495 different 5p or 3p

mature miRNA transcripts were detected, corresponding to 1,097 different precursors. The
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most abundant miRNA in the nasal swab dataset was hsa-miR-16-5p, followed by hsa-miR-

29c-3p, hsa-miR-29a-3p and hsa-miR-223-3p (Fig 1A). A total of 452 (28% of all detected miR-

NAs) had at least 100 reads (Fig 1B). Following data normalization, pairwise analyses was per-

formed at the single-miRNA level using median normalised read counts from infected vs

uninfected samples, revealing a high degree of similarity (Fig 1C). By applying a stringent data

filtering and normalisation strategy, miRNA expression between different individuals was

demonstrated to exhibit a low level of biological and technical variation, confirming the suit-

ability of this dataset to assess changes in miRNA expression between patient groups.

Fig 1. Overview of host-encoded miRNAs in nasal swab samples. A, Treemap plot displaying the relative abundance of the most highly-expressed miRNAs

in nasal swab samples. The most prevalent miRNA was miR-16-5p, followed by miR-29a-3p, miR-29c-3p and miR-223-3p. B, Line plot showing the relative

abundance of all host miRNAs identified in nasal swab samples. A total of 1495 miRNAs were detected across all 20 samples, of which 452 were detected at

greater than 100 reads. C, Scatter plot illustrating inter-sample variance at the single-miRNA level. Each individual point represents a single mature miRNA,

shown as the median of DESeq2-normalized read counts in each group and drawn in log10 scale on both axes. MiRNAs that lie exactly on the diagonal midline

have equal expression in both groups, while miRNAs located further away from the midline are potential candidates for differential expression.

https://doi.org/10.1371/journal.pone.0265670.g001
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Using DESeq2 to perform count-based differential expression (DE) testing, a subset of miR-

NAs that were up- or down-regulated in COVID-19 cases relative to uninfected controls were

identified (Fig 2A, S1 Table). Using a False Discovery Rate (FDR) adjusted p-value<0.05, log2

fold change (FC) >1 and baseMean >5, this dataset consisted of 6 miRNAs, of which four

were up-regulated (elevated in infected patients) and two were down-regulated. An additional

two miRNAs were significantly DE in COVID-19 patients with log2FC values<1. The most

highly up-regulated candidates in COVID-19 patients were miR-142-3p (Fig 2A), miR-486-

Fig 2. SARS-CoV-2 induces significant chances in the miRNA profile from patient nasal swabs. A, Volcano plot showing the increased (green) and

decreased (red) DE miRNAs in COVID-19 patients when compared to healthy controls. Horizontal dotted line is the p-value cut-off (False Discovery Rate,

FDR<0.05) and the vertical lines are the fold change cut-off (>2 FC). Orange miRNAs are statistically significant but are not>2 FC. The number of statistically

significant miRNAs (adjusted P-value<0.05) in each section are shown:<-1 Log2 FC (2 miRNAs), between –1 and 1 Log2 FC (2 miRNAs), and>1 Log2 FC (4

miRNAs). The most up-regulated, down-regulated, and statistically significant miRNAs have been labelled. B, PCA plot showing the separation of healthy

(blue) and COVID-19 (orange) samples using the 8 DE miRNAs. C, Boxplots of select miRNAs in healthy (blue) and COVID-19 (orange) samples. Boxes are

the 25th - 75th percentile, line is the median, and whiskers are 1.5x IQR. �� p-value< 0.01, ��� p-value< 0.001.

https://doi.org/10.1371/journal.pone.0265670.g002
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5p, and miR-451a, while the most down-regulated were miR-3065-3p (Fig 2A) and miR-3065-

5p. The most statistically significant change was seen in miR-142-3p. Unsupervised analysis of

variance using principal components analysis (PCA) involving the eight DE miRNAs showed

tight clustering of patient groups (Fig 2B). Differences in miRNA expression for miR-142-3p,

miR-3065-3p and miR-93-5p are shown in Fig 2C. Upon comparing miRNAs differentially

expressed in COVID-19 patients in nasal swabs and plasma [1], two miRNAs (miR-142-3p

and miR-3065-3p) were DE in both datasets (Fig 3A), while miRNAs DE in nasal swabs for the

Fig 3. Comparisons of DE miRNAs induced by SARS-CoV-2 infection in nasal swabs and plasma. A, Venn

diagram identifying DE miRNAs in plasma and nasal swabs miRNA datasets. B, Results from DE miRNA analysis

from nasal swab and plasma datasets for the 8 miRNAs listed.

https://doi.org/10.1371/journal.pone.0265670.g003
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most part showed agreement in terms of upregulation or downregulation without being statis-

tically significant in plasma (Fig 3B).

We next investigated if, similar to miRNA profiles in plasma, changes in the nasal swab pro-

file could independently classify SARS-CoV-2 infection. A supervised machine learning

method was implemented for the identification of the most predictive miRNAs and refined to

identify the minimum number needed for accurate prediction. The most predictive miRNAs

were selected using recursive feature elimination (Fig 4A). Measuring three miRNA targets

(miR-30c-2-3p, miR-628-3p and miR-93-5p) in combination gave a model with 100% accu-

racy, 100% precision and 100% recall, with a ROC AUC of 1.0 (Fig 4B). This composite bio-

marker was comprised of two miRNAs DE in COVID-19 patients (miR-628-3p

(downregulated) and miR-93-5p (upregulated)) and miR-30c-2-3p, which was not DE (Fig

4D). A decision boundary graph showed clear distinctions between healthy and infected

patients based on these three miRNAs (Fig 4C).

Several miRNAs DE in COVID-19 patient nasal swabs are associated with inflammation.

Elevated expression of miR-142-3p has been reported in Crohn’s disease and ulcerative colitis,

where elevated levels of miR-142-3p are observed in colon, blood and saliva [7]. Separate stud-

ies demonstrated a correlation between elevated miR-142-3p and circulating IL-6 levels in

inflammatory bowel disease [8] and miR-142-3p/IL-6 production in dendritic cells stimulated

with lipopolysaccharide (LPS) [9]. Studies using luciferase reporters carrying wild-type and

Fig 4. A miRNA signature in nasal swabs classifies COVID with 100% accuracy. A, Feature (miRNA) selection lineplot showing the impact of increasing

numbers of miRNAs on the performance of a logistic regression model. MicroRNAs were selected using recursive feature elimination to identify the most

important miRNAs. Each combination of miRNAs was randomly assessed 1,000 times. Shaded areas are the 95% CI, and the dotted line is a perfect (100%)

score. B, Barplot showing the average score of the three-miRNA signature in predicting healthy controls and COVID-19 patients. Error bars are the 95% CI

after 1,000 random iterative assessments. C, Decision boundary graph showing the logistic regression decision point (solid black line) and the probability a

person is infected with SARS-CoV-2 (blue to red shading). Datapoints are healthy (circles) and COVID-19 (crosses) samples. D, Boxplots of each of the

signature miRNAs in healthy (blue) and COVID-19 (orange) samples. Boxes are the 25th - 75th percentile, line is the median, and whiskers are 1.5x IQR. � FDR

adjusted p-value< 0.05, �� FDR adjusted p-value< 0.01. n.s. non-significant.

https://doi.org/10.1371/journal.pone.0265670.g004
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altered IL-6 3’UTR confirm IL6 as a miR-142-3p target gene [9], while miR-142-3p acts in a

dose-dependent manner to inhibits IL6 transcription in polymorphonuclear leukocytes stimu-

lated with LPS [10]. miR-93-5p, also up-regulated in COVID-19 anterior nasal tissues, inhibits

the production of IL-6, TNF and IL-1β in osteoarthritis and diabetic nephropathy models

through regulation of high mobility group proteins HMGB1 and HMGA2, respectively [11,

12]. IL-6 is one of the key mediators of viral cytokine storm and inflammation in patients with

severe COVID-19 [13]. It is intriguing to speculate that miR-142-3p and miR-93-5p are

induced to counteract potentially deleterious effects of elevated IL-6 in COVID-19 patients, a

response associated with respiratory failure and death [14]. Intriguingly, the most downregu-

lated miRNA in nasal swabs from COVID-19 patients, the relatively poorly-characterised

miR-3065-3p, is also down-regulated in inflamed placental tissue and significantly reduced by

LPS stimulation [15]. Additionally, other miRNAs responsive to SARS-CoV-2 infection has no

known links to inflammation but have been observed in infection [16, 17].

Further studies are planned to address limitations in this study, particularly relating to the

analytical specificity of miRNA profiles associated with COVID-19. This study has not investi-

gated host miRNA responses to infections other than SARS-CoV-2, with other pathogens

causing lower and upper respiratory tract infections of particular interest. While it is interest-

ing to note that circulating miRNA profiles in animal models of COVID-19 and influenza are

distinct [1], and miRNA responses to seasonal influenza viruses differ according to virus sub-

type both in vivo [18] and in vitro [19], further work is required to define the robustness and

specificity of miRNA responses to particular pathogens. Such studies should also consider

chronic diseases, with miR-142-3p for example associated with distinct inflammatory condi-

tions. Furthermore, while our primary objective in this study was to discover unique miRNA

profiles in COVID-19 cases, independent of their disease state, severity or chronology, future

studies may investigate miRNA correlates of COVID-19 severity for prognostic indications.

Conclusion

One of the more dangerous features of COVID-19 is its ability for sustaining human-to-

human transmission pre- and asymptomatically [20]. U.S. CDC estimates that 40% of trans-

mission occurs prior to symptom onset [20]. Furthermore, approximately 35% of COVID-19

infections remain asymptomatic throughout the entire course of the disease [16]. These traits

of COVID-19 have facilitated its rapid spread leading to the current deadly global pandemic,

and highlights that innovations are required to fill gaps in the SARS-CoV-2 diagnostic land-

scape. Here we have shown that positive COVID-19 PCR test results correspond to a change

in the nasal swab miRNA profile that can independently classify disease cases. Further studies

involving larger patient groups, including pre-symptomatic, asymptomatic and different (e.g.

severity, variants) infections are planned to assess whether this pattern is observed during the

COVID-19 incubation period (median 6.5 days) and would thus have real-world application

for improved disease detection or prognosis. As miRNA responses are reflective of the host

response to infection, miRNA biomarkers could also provide clinical utility in the provision of

infection evidence to reduce false-negative rates with PCR testing [21].

Supporting information

S1 Table. DE miRNAs in COVID-19 cases.

(XLSX)
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